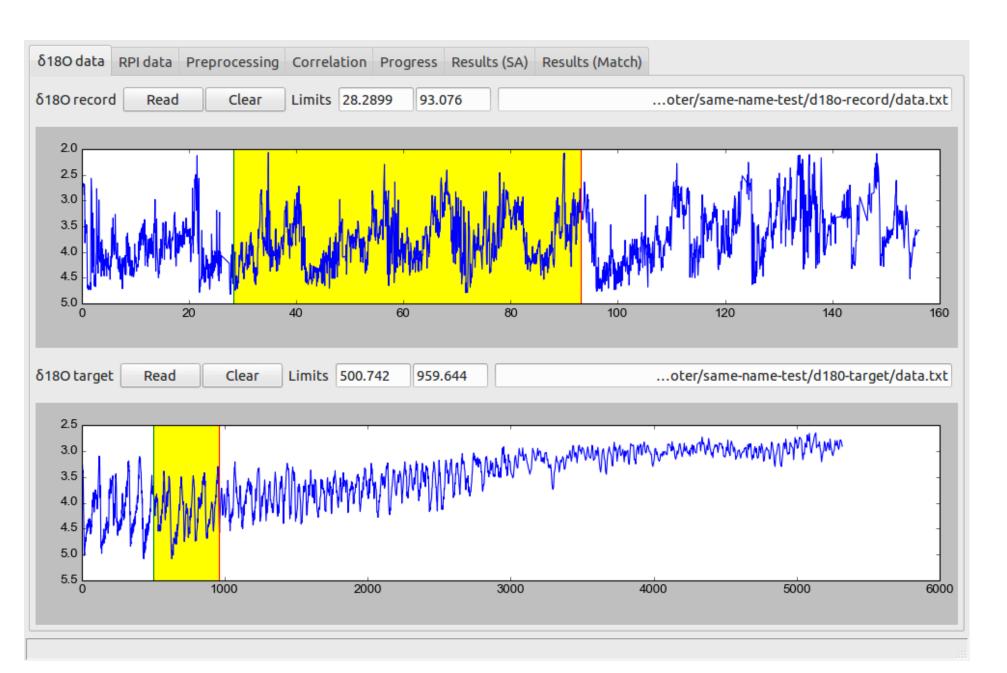
Automated curve matching techniques for reproducible, high-resolution palaeomagnetic dating

Introduction

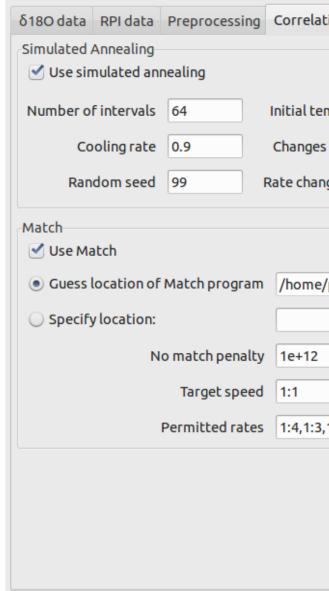

High-resolution relative palaeointensity (RPI) and palaeosecular variation (PSV) data are increasingly important for accurate dating of sedimentary sequences, often in combination with oxygen isotope ($\delta^{18}O$) measurements. A chronology is established by matching a measured downcore signal to a dated reference curve, but there is no standard methodology for performing this correlation.

Traditionally, matching is done by eye, but this becomes difficult when two parameters (e.g. RPI and δ^{18} O) are being matched simultaneously, and cannot be done entirely objectively or repeatably. More recently, various automated techniques have appeared for matching one or more signals. We present Scoter, a user-friendly program for dating by signal matching and for comparing different matching techniques.

The Scoter program

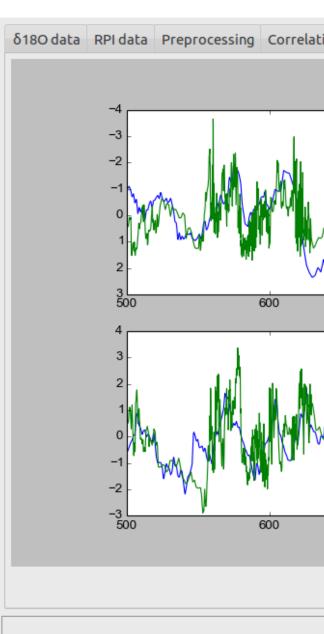
Scoter is a cross-platform (Windows, Mac, Linux) application written in Python, and consists of a general-purpose time-series processing and correlation library linked to a graphical desktop front-end. RPI, PSV, and other records can be opened, preprocessed, and automatically matched with reference curves. The current version of Scoter incorporates an experimental signalmatching algorithm based on simulated annealing (Kirkpatrick *et al.*, 1983), as well as an interface to the well-established Match program of Lisiecki and Lisiecki (2002), enabling results of the two approaches to be compared directly. Scoter's modular structure makes it easy to incorporate further correlation techniques, making it a useful platform for further research into curve matching algorithms as well as a practical correlation tool in its own right.

Typical workflow for the Scoter program



Development status and availability

Scoter is largely functionally complete, and is currently being debugged, tested, and documented. The program will be released later this year as free software under the GNU General Public License.

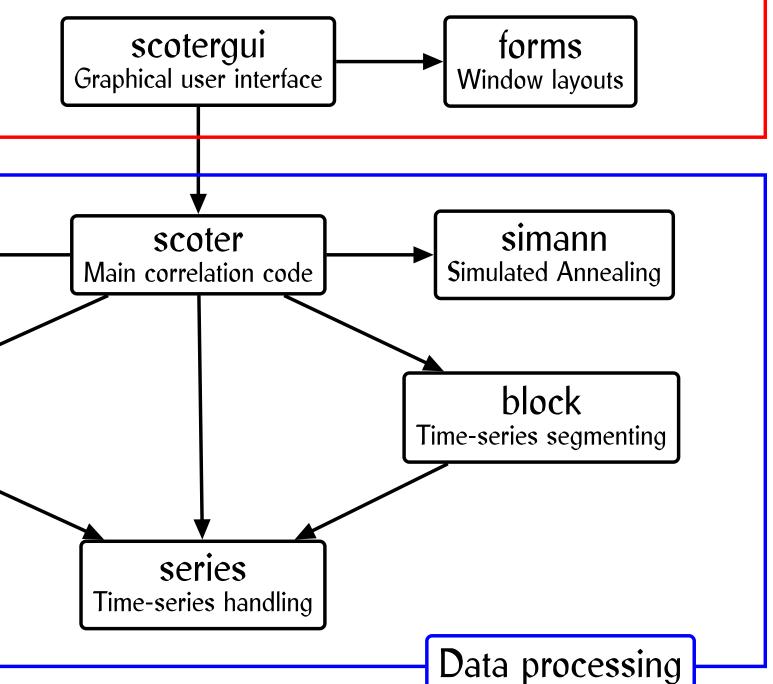

Pont Lurcock¹ <pont@talvi.net>, James Channell² ¹Istituto Nazionale di Geofisica e Vulcanologia, Rome ²University of Florida, Gainesville

1. Open data files and select parts to be correlated.

3. Results from Match correlation (δ^{18} O and RPI)

2. Choose parameter ing correlation algo

4. Results from sin


5. Export results as a bundle for archiving, further analysis, or publication.

	Scripting and rep
ion Progress Results (SA) Results (Match)	Graphical interface
Imperature 10000 Final temperature 1 threshold 50 Steps threshold 200	
ge penalty 1 Maximum rate 4	
pont/files/bin/match	Graphical plotting
Speed penalty 0 Tie penalty 100 Speed change penalty 1 Gap penalty 1 Intervals 64	Crapfilear plotting
1:2,2:3,3:4,1:1,4:3,3:2,2:1,3:1,4:1	match Interface to Match program
Start correlation	
ers for Match and simulated anneal- orithms.	
ion Progress Results (SA) Results (Match)	Module structure of the Scoter par GUI code, making it easy to reuse
	Scoter is designed to I
m man man man man man	environments, and to n core libraries can be us
700 800 900 1000	Graphical user interfa ration of different cor
man a when my have a first when he was	Command-line interfa
	workflows. Python API for incorpo
700 800 900 1000	or in languages that
Save results	Data bundles
nulated annealing (δ^{18} O and RPI)	
聞 画 聞 田 愛 V 明 論 ⇔ ▼ ♂ ▼ ④ Σ /0 [↓ [↑]n 100% ▼ Sans 10 記 伝 記 10 5 5 5 1 冊 ■ 二 剛 米 ・ 報 ぷ ざ ひ 邱 ▲ 11 ▼ ▲ ▼ 圖 ▼	In Earth sciences as in
C O C B C D E F G H I J K L M N O P 28239 045397612726 38332697166 0.528945924362 4 2813906197 0.6796989488 4 2813906197 0.671689488 1124652032 1124652032 1124652032 1124652032 1124652032	coming an increasingly simple as possible, Sc

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680 Lisiecki, L. E., & Lisiecki, P. A. (2002). Application of dynamic programming to the correlation of paleoclimate records. Paleoceanography, 17(4).

ckage. The data processing modules are cleanly separated from the e them in other Python scripts and applications.

be usable in a wide variety of workflows and make it easy to reproduce analysis results. The sed through three different interfaces:

ace for ease of use and quick interactive explorrelation parameters.

ace for incorporation into scripted processing

oration into other programs written in Python, can interface with Python.

other disciplines, reproducible research is bey important theme. To make reproducibility as coter allows the user to export a **bundle** – an archive file containing the input data, results files, analysis parameters, a script to run the analysis, and (optionally) a copy of the Scoter program itself. Thus a correlation can be interactively developed using the graphical interface, then saved and shared as a self-contained package, from which the analysis can be automatically 'replayed' at any time with minimal external dependencies.